26 research outputs found

    The World of Fast Moving Objects

    Full text link
    The notion of a Fast Moving Object (FMO), i.e. an object that moves over a distance exceeding its size within the exposure time, is introduced. FMOs may, and typically do, rotate with high angular speed. FMOs are very common in sports videos, but are not rare elsewhere. In a single frame, such objects are often barely visible and appear as semi-transparent streaks. A method for the detection and tracking of FMOs is proposed. The method consists of three distinct algorithms, which form an efficient localization pipeline that operates successfully in a broad range of conditions. We show that it is possible to recover the appearance of the object and its axis of rotation, despite its blurred appearance. The proposed method is evaluated on a new annotated dataset. The results show that existing trackers are inadequate for the problem of FMO localization and a new approach is required. Two applications of localization, temporal super-resolution and highlighting, are presented

    Sub-frame Appearance and 6D Pose Estimation of Fast Moving Objects

    Full text link
    We propose a novel method that tracks fast moving objects, mainly non-uniform spherical, in full 6 degrees of freedom, estimating simultaneously their 3D motion trajectory, 3D pose and object appearance changes with a time step that is a fraction of the video frame exposure time. The sub-frame object localization and appearance estimation allows realistic temporal super-resolution and precise shape estimation. The method, called TbD-3D (Tracking by Deblatting in 3D) relies on a novel reconstruction algorithm which solves a piece-wise deblurring and matting problem. The 3D rotation is estimated by minimizing the reprojection error. As a second contribution, we present a new challenging dataset with fast moving objects that change their appearance and distance to the camera. High speed camera recordings with zero lag between frame exposures were used to generate videos with different frame rates annotated with ground-truth trajectory and pose

    NeRD: Neural field-based Demosaicking

    Full text link
    We introduce NeRD, a new demosaicking method for generating full-color images from Bayer patterns. Our approach leverages advancements in neural fields to perform demosaicking by representing an image as a coordinate-based neural network with sine activation functions. The inputs to the network are spatial coordinates and a low-resolution Bayer pattern, while the outputs are the corresponding RGB values. An encoder network, which is a blend of ResNet and U-net, enhances the implicit neural representation of the image to improve its quality and ensure spatial consistency through prior learning. Our experimental results demonstrate that NeRD outperforms traditional and state-of-the-art CNN-based methods and significantly closes the gap to transformer-based methods.Comment: 5 pages, 4 figures, 1 tabl

    H-NeXt: The next step towards roto-translation invariant networks

    Full text link
    The widespread popularity of equivariant networks underscores the significance of parameter efficient models and effective use of training data. At a time when robustness to unseen deformations is becoming increasingly important, we present H-NeXt, which bridges the gap between equivariance and invariance. H-NeXt is a parameter-efficient roto-translation invariant network that is trained without a single augmented image in the training set. Our network comprises three components: an equivariant backbone for learning roto-translation independent features, an invariant pooling layer for discarding roto-translation information, and a classification layer. H-NeXt outperforms the state of the art in classification on unaugmented training sets and augmented test sets of MNIST and CIFAR-10.Comment: Appears in British Machine Vision Conference 2023 (BMVC 2023

    Blur Invariants for Image Recognition

    Full text link
    Blur is an image degradation that is difficult to remove. Invariants with respect to blur offer an alternative way of a~description and recognition of blurred images without any deblurring. In this paper, we present an original unified theory of blur invariants. Unlike all previous attempts, the new theory does not require any prior knowledge of the blur type. The invariants are constructed in the Fourier domain by means of orthogonal projection operators and moment expansion is used for efficient and stable computation. It is shown that all blur invariants published earlier are just particular cases of this approach. Experimental comparison to concurrent approaches shows the advantages of the proposed theory.Comment: 15 page

    Real-Time Wheel Detection and Rim Classification in Automotive Production

    Full text link
    This paper proposes a novel approach to real-time automatic rim detection, classification, and inspection by combining traditional computer vision and deep learning techniques. At the end of every automotive assembly line, a quality control process is carried out to identify any potential defects in the produced cars. Common yet hazardous defects are related, for example, to incorrectly mounted rims. Routine inspections are mostly conducted by human workers that are negatively affected by factors such as fatigue or distraction. We have designed a new prototype to validate whether all four wheels on a single car match in size and type. Additionally, we present three comprehensive open-source databases, CWD1500, WHEEL22, and RB600, for wheel, rim, and bolt detection, as well as rim classification, which are free-to-use for scientific purposes.Comment: 5 pages, 7 figures, 3 table

    Temporal Ordering in Endocytic Clathrin-Coated Vesicle Formation via AP2 Phosphorylation.

    Get PDF
    Clathrin-mediated endocytosis (CME) is key to maintaining the transmembrane protein composition of cells' limiting membranes. During mammalian CME, a reversible phosphorylation event occurs on Thr156 of the μ2 subunit of the main endocytic clathrin adaptor, AP2. We show that this phosphorylation event starts during clathrin-coated pit (CCP) initiation and increases throughout CCP lifetime. μ2Thr156 phosphorylation favors a new, cargo-bound conformation of AP2 and simultaneously creates a binding platform for the endocytic NECAP proteins but without significantly altering AP2's cargo affinity in vitro. We describe the structural bases of both. NECAP arrival at CCPs parallels that of clathrin and increases with μ2Thr156 phosphorylation. In turn, NECAP recruits drivers of late stages of CCP formation, including SNX9, via a site distinct from where NECAP binds AP2. Disruption of the different modules of this phosphorylation-based temporal regulatory system results in CCP maturation being delayed and/or stalled, hence impairing global rates of CME

    Image fusion via multichannel blind deconvolution.

    No full text
    The thesis focuses on fusion of degraded images originating from one source with the aim of obtaining an undergraded image of the source. Depending on the type of the degradation, a formalized system of the most common fusion problems is built. The unknown degradation we deal with is additive noise and space-invariant blurs modeled by convolution. The fusion process is then referred to as multichannel blind deconvolution and it frequently occurs in microscopy imaging, remote sensing, astronomical imaging, etc. A novel iterative algorithm is proposed which solves an energy minimization problem by means of an alternating minimization scheme. The energy functional, which is utilized here, incorporates regularization of the original image and blurs. Anisotropic regularization of the image based on total variation and the Mumford-Shah functional is implemented. Regularization of the blurs emanates from the multichannel framework of the problem, in particular from mutual relations between channels degraded with different blurs. A better restoration performance was achieved in comparison with previously proposed multichannel blind approaches. Primarily, an enhanced noise robustness was observed. An accurate estimation of the blur size is however necessary.Available from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi
    corecore